
A bond percolation critical probability determination based on the star-triangle transformation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 1525

(http://iopscience.iop.org/0305-4470/17/7/020)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 08:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Math. Gen. 17 (1984) 1525-1530. Printed in Great Britain 

A bond percolation critical probability determination based 
on the star-triangle transformation? 

John C Wierman 
Department of Mathematical Sciences, Johns Hopkins University, Baltimore, Maryland 
21218, USA 

Received 26 October 1983 

Abstract. The bond percolation critical probability of a planar graph with square and 
triangular faces, obtained by inserting a diagonal in every other face of the square lattice, 
is the root of 1 - p - 6 p 2 + 6 p 3 - p 5 = 0  in (0, l ) ,  which is approximately 0.404518. The 
proof uses the star-triangle transformation to determine the parameter value for which 
the percolative behaviour of the lattice and its dual lattice are identical. 

1. introduction 

The classical problem of mathematical percolation theory is the rigorous determination 
of critical percolation probabilities. A heuristic method due to Sykes and Essam 
derived the conjectured value of 4 for the square lattice bond model and triangular 
lattice site model, based on self-duality and self-matching properties of the lattices 
respectively. Following pioneering work by Seymour and Welsh (1978) and Russo 
(1978), Kesten (1980, 1982) rigorously verified these values. Sykes and Essam’s 
method, plus additional reasoning using the star-triangle transformation, yielded the 
values 2 sin( 7 ~ /  18) and 1 - 2 sin( T /  18) for the triangular and hexagonal lattice bond 
models, respectively. Wierman (1981) verified these values. However, counter- 
examples have been given by Van den Berg (1981) and Wierman (1984) to other 
claims relating to the Sykes and Essam method. 

Kesten (1982) supplied results on critical probabilities and surfaces in the context 
of multiparameter site percolation models on two-dimensional periodic graphs with 
one axis of symmetry. This paper applies Kesten’s principal theorems and the star- 
triangle transformation to evaluate the bond percolation critical probabilities of the 
square lattice with diagonal bonds inserted in every other face and its dual lattice. 
The graphs, shown in figure 1, have critical probabilities po=0.404 518, the root of 
1 - p - 6p2  + 6 p 3  - p 5  in [0, 11, and 1 - po respectively. Definitions and discussion of 
Kesten’s results are presented in § 2, with the derivation of the critical probability 
values provided in § 3. 

2. Background 

In a bond percolation model on a graph 3, each bond is open with probability 
p ,  0 s p c 1, independently of all other bonds. The probability measure and expectation 
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Figure 1. ( a )  Shows the square lattice with diagonals 
inserted in every other face. ( b )  is its dual graph. 
( c )  illustrates the duality relationship. 

operator corresponding to parameter value p are denoted by Pp and Ep respectively. 
A path on 9 is an alternating sequence r = (so, bl ,  sl, bZ, . . . , s, -1 ,  b,, s,) of sites 

{s,} and {b ,}  such that b, has s,-] and s, as endpoints for each i = 1, .  . . , n. A path r 
is a circuit if so = s,. A path is open (closed) if all its bonds are open (closed). For 
any site s, the open cluster containing s, denoted W,, is the set of all bonds which are 
in any open path containing the site s. Let 4+ W, denote the number of bonds in the 
open cluster containing s. 

Several different definitions of critical probability have been proposed. The cluster 
size critical probability is 

pH( 9) = inf{p E [U, 11: P,( # W, = + m) > O}. 

The expected cluster size critical probability is 

pT( %) = inf{ p E [0,1]: E,( # W,) = a}. 

If 9 is connected, the values of pT and pH are independent of the choice of site s. For 

A crucial development in the rigorous evaluation of critical probabilities was 
the introduction of the sponge-crossing critical probability by Seymour and 
Welsh (1978). An i-crossing of the rectangle R = [ m l ,  n,]X[mz, n2]= 
{x  = (x ( l ) ,  4 2 ) ) :  m, s x(i)  S n,, n,, i = 1,2} is a path (so, b l ,  . . . , s,) such that so(i) s 
m,, s,(i) 3 n,, 6, intersects {x(i) = m,} n R, b, intersects { x ( i ) }  n R, and sl, bz,  . . . , s , - ~  
are contained in the interior of R. The crossing probability in the ith direction of 
[m, ,  nl ]  x [mz ,  nz] is a ( m l ,  n l ;  m2, n2;  i, p )  = P p { 3  an open i-crossing of [ml ,  n,] x 
[m2, nzl}. 

Kesten’s general results all are proved in the setting of periodic graphs. A periodic 
graph in the plane is a connected graph which contains no loops (i.e. each bond has 
two distinct endpoints), has at most z <CO bonds incident to any site, and such that 
all bonds have finite length, every compact set intersects only finitely many bonds, and 
the sets of sites and bonds are invariant under translation by any vector with integer 
components. For periodic graphs, the crossing probabilities essentially do not depend 
on the location of the rectangle, but only on the length and width. The sponge-crossing 

any 9, Pr( 9) s P H (  3). 
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critical probability is defined for a periodic graph % by Ps(%)=  
inf{pE [0,1]: lim a(0, n ;  0 , 3 n ;  1, p )  v a(O,3n;  0,  n ;  2, p )  > 0). (The original 
definition by Seymour and Welsh used crossings of squares. The present definition is 
due to Kesten (1981).) One of the few dimension-free results in percolation is that 
ps(  %) = h( (8) for a periodic graph % of any dimension (see Kesten 1981 or 1982). 

For a planar graph 9, the dual graph %* is constructed by placing a site of %* in 
each face of %, and connecting two sites of %* if the corresponding faces share a 
common edge. Thus there is a one-to-one correspondence between edges of % and 
edges of %*, and (%*)* = 3. If % is periodic, then one may construct %* to be periodic 
also. 

The one-to-one correspondence allows a percolation model on % to induce a dual 
percolation model on %*. Each bond of %* is open (closed) if and only if the 
corresponding bond of % is open (closed). An open cluster in one lattice is bounded 
by a closed circuit in the dual lattice. Crossing probabilities in the dual graph %* will 
be denoted by 

g * ( m l ,  n l ;  m2, n2; i , p )  = P p ( 3  a closed i-crossing of [ml ,  n l ] x [ m 2 ,  n 2 ] ) .  

Kesten's principal theorems are formulated for two-dimensional periodic graphs 
with one axis of symmetry. They provide conditions on the probability parameter p, 
in terms of crossing probabilities on % and %*, which can be used to verify that a 
proposed value po is the critical probability pH( 9) = h( $3) = ps( %), and pH( %) + 
pH( %*) = 1. One condition requires a relation between open crossing probabilities on 
% and closed crossing probabilities on %* in the same direction, while another requires 
a relation between horizontal open crossings and vertical open crossings on each of % 
and %*. For detailed statements of these results, see Kesten (1982, ch 3). We now 
state a very specialised corollary of these results, which will suffice for the graphs in 
this paper. 

Lemma. Consider the bond percolation model on a planar periodic graph % with one 
axis of symmetry. Suppose there exists po E [0,1], 0 < c, S C, <CO and a,,, b,, E R  such 
that 

C,g(m,+al l ,  n1+a12; m2+a21, nz+a22; kpo) 

~ a * ( m l + b l i ,  ni+b12; mz+b21, n2+b22; i jpo)  

~ C i c + ( m l + a l l , n l + a l ~ ;  m2+a21,  n2+az2;  i,p,,) 

forall  m , , n l , m 2 , n 2 ~ Z , a n d  i = l , 2 .  Then 

P H (  3) = pT( = pS( = P O  

and pH( %*) = p T (  %*) = p s (  %*) = 1 -Po. 

3. Derivation of critical probabdities 

Construct an infinite graph 5Y imbedded in R 2  as follows. For each pair of integers 
( i , j ) ,  locate a site of %' at each of the points ( i ,  j )  and ( i + t , j + $ ) .  Connect the site 
at ( i , j )  by a bond to each of the sites ( i , j - l ) ,  ( i , j + l ) ,  and ( i * f , j * $ )  (see figure 1). 
Notice that, upon rotation by 45", %'may be viewed as a square lattice with a diagonal 
inserted in every other face. The dual lattice 5Y* may be constructed as a periodic 
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lattice by locating its sites at ( i + &  j ) ,  (i+a, j + $ )  and ( i+& j + $ )  for each pair of 
integers ( i ,  j ) .  

The standard bond percolation model on X may be transformed into an equivalent 
bond percolation model on a related graph. Let XI denote the graph obtained from 
X by replacing each vertical bond of X by two vertical bonds between the same pair 
of sites. If each of these vertical bonds on XI is open with probability 1 - ( l - ~ ) ” ~ ,  
in the resulting model the probability that ( i ,  j )  and ( i ,  j +  1)  are connected by one or 
both bonds possible in XI being open is p. Under this transformation the subgraph 
of X contained in the rectangle [i, m +$] X [0,  n]  shown in figure 2(a) is transformed 
into the subgraph of XI shown in figure 2 ( b ) .  

The star-triangle transformation may be applied to XI. Each square (i, j )  + [ O ,  11 X 
[0, 13 contains two triangular faces of X1. By Sykes and Essam (1964), if the sides of 
a triangle are open with probabilities a, b and c, and the opposite bonds on a 
super-imposed ‘star’ are open with probabilities a, b and c respectively, the probabilities 
of connections between the vertices of the triangle with open bonds on the triangle 
and closed bonds on the star are identical if 1 - a - b - c + abc = 0 (see figure 3).  In 
the model on Zl, this condition is satisfied if 

1 - 2p - [l - ( 1  -p)’/2] + p2[1- ( 1  - p)1/2] = 0 

1 - p -  6p2+ 6p3-p5 = 0. 

which implies that 

(1)  

Let po denote the solution of (1)  in [0, 13, which is approximately 0.404 518.  If p = po,  
applying the star-triangle transformation to each triangular face of XI (locating the 
center site of the star at ( i + $ ,  j+i) or ( i+i,  j + $ ) ) ,  we obtain an equivalent bond 
percolation model on the graph X 2  shown in figure 2( c ) .  In fact, Z2 is the dual graph 
X?. The percolative behaviour of open bonds on the subgraph of XI contained in 
[i, m +;I X [0,  n] is equivalent to that of closed bonds on the subgraph of Z2 shown 
in figure 2(c), in which each horizontal bond is closed with probability ( 1  - P ~ ) ~ ”  and 
each diagonal is closed with probability 1 -po. 

Replace each pair of adjacent horizontal bonds in X 2 ,  each being closed with 
probability ( 1  - P ~ ) ” ~ ,  by a single horizontal bond which is closed with probability 
1 -po. This transformation preserves equivalence of connectivities by closed bonds in 

I-11-pd 2lEl38 
I C  1 ( d  1 

Figure 2. Open bond probabilities are indicated for bonds on the upper left in (a)  and 
( b ) ;  closed bond probabilities in ( c )  and ( d ) .  
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Figure 3. Star-triangle transformations. 

the previous model on X2 and closed bonds in the resulting model on a translation 
X, of the dual X* of the original graph. (Note that in a standard bond model where 
connectivities through open bonds are considered, the proper probability that the 
replacement bond is closed would be 1 - [ 1 - (1 -p0)1’2]2. Since we are considering 
connections through closed bonds, for the replacement bond to be closed we require 
both replaced bonds to be closed.) When applying this transformation to the rec- 
tangular region [i, m + i] X [0, n], the pairs of adjacent horizontal bonds in the interior 
of the region may be replaced as above. However, single horizontal bonds appear on 
the left and right edges. Denote the resulting graph by 9. In the resulting equivalent 
model on 92, shown in figure 2(d) ,  let a*(%; i, p )  denote the probability that there 
exists a closed crossing of % in the ith direction when the parameter is p ,  for i = 1 , 2 .  
By the preceding sequence of equivalences, for i = 1 , 2 ,  

a*(%; i, po)  = a(+, m ++; 0, n ;  i, po) .  

Expand % to obtain a graph by adding bonds from ($,j+i) to ( $ , j + $ )  and 
from ( m + i , j + i )  to ( m + a , j + $ )  for each O c i c n - 1 .  Let each of these bonds be 
closed with probability (1 - - P ~ ) ” ~ ,  and u * ( % ~ ;  i, p )  denote the probability that there 
exists a closed crossing of in the ith direction when the parameter p.  The addition 
of bonds to % does not affect the probability of vertical crossings, so 

a*(%l; 2 ,  po)  = U(;,  m +;; 0, n ;  2 ,  po) .  

A horizontal closed crossing of 92t contains a horizontal closed crossing of 3, so 

a*(%l; l , p o ) c ~ * ( % ;  l , p o ) = a ( t , m + $ ; ~ , n ;  l , p o ) .  

Since a horizontal closed crossing of 92 may be extended to a horizontal closed 
crossing of by addition of a closed bond on each end, we also have 

a*(%l; 1, P O )  3 (1 -pJu*(B,; 1, PO) = (1 - p o ) a ( + ,  m +t;  0, n;  I ,  po) .  

Replace each pair of adjacent horizontal bonds on the left and right sides of by a 
single horizontal bond which is closed with probability l -po ,  as in transforming 5Y2 
into 2,. This produces a graph which is a translation of the subgraph of 2* contained 
in [-& m +b] X [O, n], with the dual percolation model for X. Therefore 

(1  - p O ) u ( t ,  m + t ;  0, n ;  1,  pol 
and 

U*( -$ ,  m +a; 0, n;  I ,  po)  s a(&, m +t ;  0, n ;  1, po)  

a*(-:, m +a; 0, n ;  2, po)  = a(;, m ++; 0, n;  2, po l ,  
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for any positive integers m and n. Thus, the hypotheses of lemma 1 are satisfied, so 
we conclude that 

ps( X) = h( X) = mi( 2) = PO 0.404 5 18 

and 
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